Количественный анализ микроструктуры материалов

Автоматизированный металлографический анализ

Направлен на повышение воспроизводимости контроля качества структуры материалов, ускорения и упрощения количественного анализа в научных и производственных лабораториях

Группа компаний SIAMS

Разработка программного обеспечения для медицины

Systems of Image Analysis and Modeling Structures

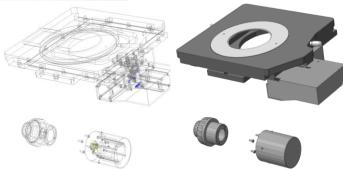
Более 2000 внедрений ПО в России и за рубежом

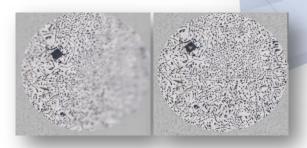
Головной офис: Екатеринбург

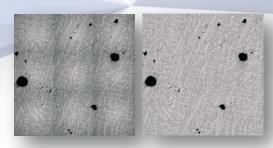
Год создания: 1991 Штат в 2023г.: 70 чел.

АВТОМАТИЗАЦИЯ МИКРОСТРУКТУРНОГО АНАЛИЗА АНАЛИЗАТОРЫ SIAMS

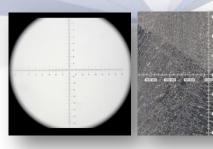
Собственное производство в г. Екатеринбург: системы моторизации, контроллеры, джойстики, управляющее ПО Внедрено более 200 комплектов





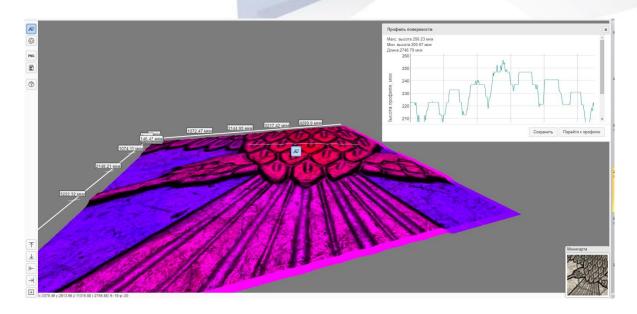


- В комплект моторизации микроскопа входит стол или привод для перемещения столика, привод рукоятки фокусировки, привод револьвера объективов.
- Собственное производство позволяет удешевить предложение в 2 и более раз по сравнению с зарубежными аналогами.
- Моторизованный микроскоп позволяет справляться с анализом сложных образцов: трудно поддающихся выравниванию поверхности, требующих анализа больших областей.


РАСШИРЕНИЕ ВОЗМОЖНОСТЕЙ МИКРОСКОПА

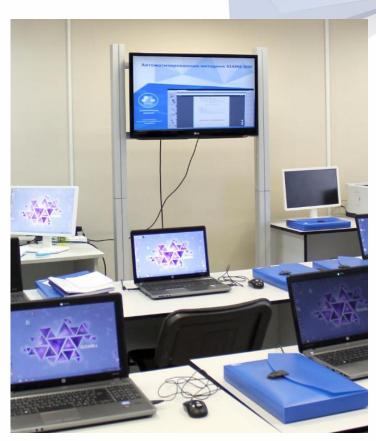
Съемка видеопотока всех фокальных плоскостей

Автоматическая коррекция купола освещенности микроскопа


Вместо измерений в условных делениях окулярной шкалы

12.12.2023

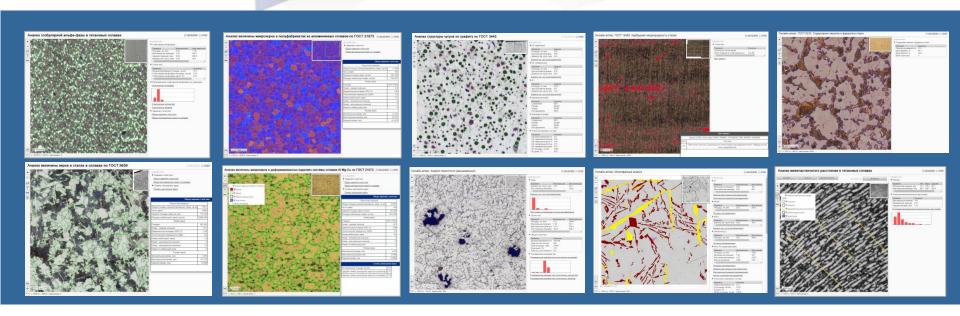
РАСШИРЕНИЕ ВОЗМОЖНОСТЕЙ МИКРОСКОПА


3D – панорамы с измерениями по X-Y-Z

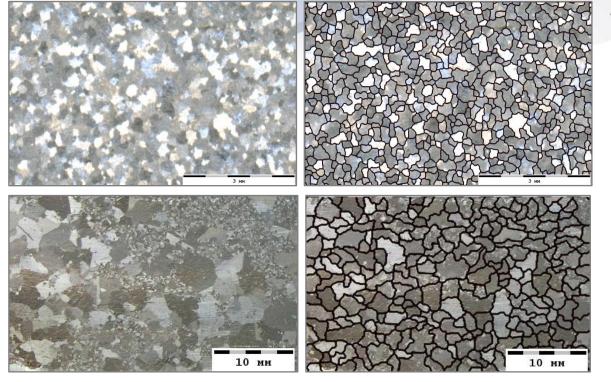
Возможности работы с 3D поверхностью:

- масштабирование, вращение;
- построение профиля сечения;
- построение сетки поверхности;
- построение карты рельефа поверхности;
- возможность обрезки поверхности по плоскости x-y;
- линейные измерения по x, y, z;
- анализ основных параметров шероховатости поверхности Ra, Rz, Rmax, Sm, S, tp.

РАСШИРЕНИЕ ВОЗМОЖНОСТЕЙ МИКРОСКОПА

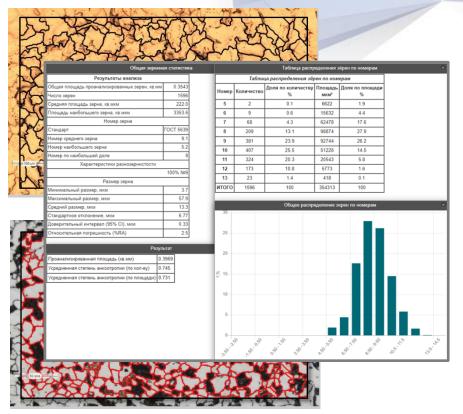

ДИСТАНЦИОННАЯ КОЛЛЕКТИВНАЯ РАБОТА ЛАБОРАТОРИИ

Работа с микроскопами без территориальной привязки к рабочему месту



Технические решения

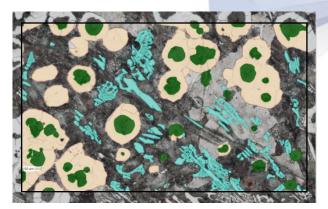
Готовые решения для анализа микроструктуры в соответствии со стандартами (ГОСТ, ASTM, ISO, DIN и др.)

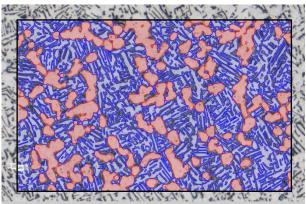

 Макроструктура слитка из сплава АД31.
Результат определения балла зерна по ГОСТ 21073.2-75:

Балл зерна	1
Средний размер зерна, мкм	211
Количество зерен на 1 кв.см	1963

 Макроструктура изделия из сплава XH35BTЮ. Результат определения балла зерна по ГОСТ 21073.2-75 (зерна менее 400 мкм не определялись):

Балл зерна	1
Средний размер зерна, мм	1,6

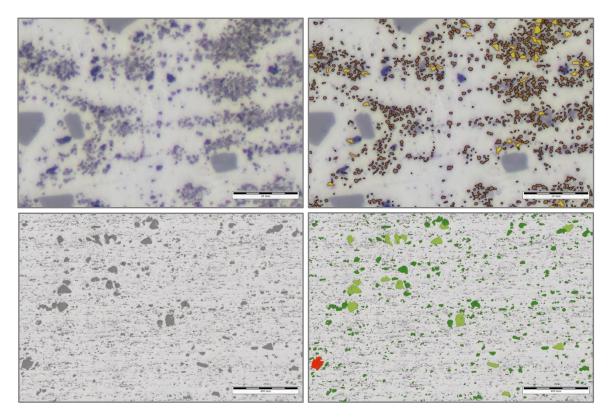




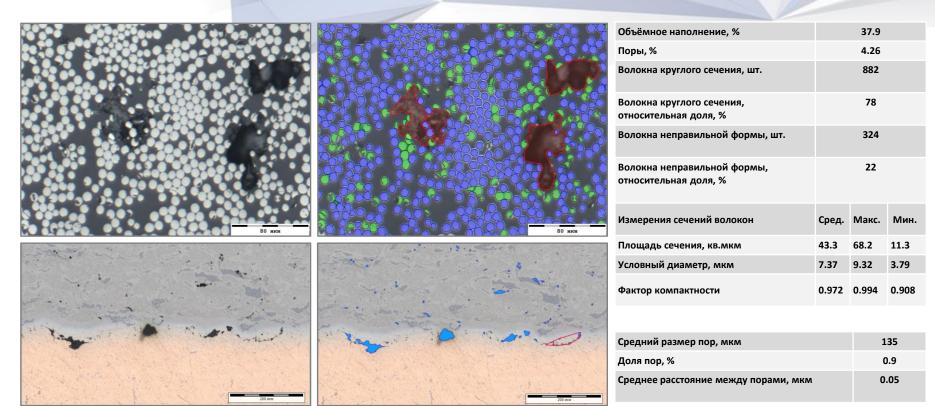
Анализ величины микрозерна

Анализ неметаллических включений сомпания

Автоматический анализ микроструктуры SIAMS



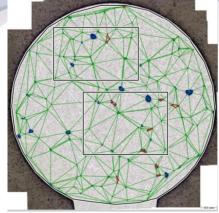
Проанализированная площадь, мм²	1.22
ГОСТ 3443. Содержание включений цемент	ита
Цементит (содержание, %)	11.0
Балл	Ц10. Содержание 5-15%
Средняя площадь включений цементита (из 3 наибольших), мкм 2	6921.9
Балл	Цп6000. Площадь НВЦ 2000-10000 мкм²
ГОСТ 3443. Содержание перлита и феррита	
Доля графита, %	7.6
Площадь металлической основы, кв.мм	1.13
Относительная доля перлита, %	69.8
Относительная доля феррита, %	30.2
Обозначение структуры металлической основы	П70 (Ф30)
ГОСТ 3443. Содержание графита	
Преобладающая форма шаровидного графита	ШГф5. Правильная
Диаметр шаровидного графита	ШГд45. 30-60 мкм (44.1)
Распределение включений графита	ШГр1.Равномерное
Количество включений графита	ШГ6 (7.5 %)
Количество вермикулярного графита	ВГ10. (15.8 %)
Размер вермикудярного графита	132 мкм
Структура графита в чугуне по ГОСТ 3443	ШГф5 - ШГд45 - ШГр1 - ШГ6
Балл по ГОСТ 3443	ШГф5 - ШГд45 - ШГр1 - ШГ6 - Ц10 - Цп6000- П70 (Ф30)



ЦИФРОВЫЕ ТЕХНОЛОГИИ SIAMS

Анализ микроструктуры алюминиевых сплавов

Результаты измерений частиц TiB2					
Общее количеств	о объек	гов	5600		
Доля по площади	0,05				
Средняя величин	а, мкм		0.9557		
СКО, мкм	0.5163				
Dmax Фере, мкм	Кол-во	Доля по площади %	Доля по объему %		
≤ 1	3481	28,64	16,70		
1 - 2	1856	53,25	54,78		
2 - 3	242	15,71	23,72		
3 - 4	18	1,89	3,59		
4 - 5	3	0,51	1,22		
Результаты изме	рений ча	істиц Al3Ti			
Общее к	оличеств	о объектов	5761		
Доля по площади, % 0,					
Средня	я велич	ина, мкм	6.810		
	СКО, мк	M	7.802		
Dmax Фере, мкм	Кол-во	Доля по площади %	Доля по объему %		
5 - 10	1368	11,97	3,22		
10 - 20	918	28,02	14,04		
20 - 30	209	19,63	16,72		
30 - 40	14,53				
40 - 50	25	8,00	12,23		
50 - 60	13	6,26	11,70		
60 - 70	5	3,61	8,31		
70 - 80	6	4,55	10,65		



Анализ микроструктуры композитов

Таблица распределения						*	
Проанализир	ованная	площадь (образца, і	MM²		1,3102	
Размеры пор мкм	Суммарная длина пор, мкм						
≤ 10	56	57,7	4274	998,7	0,08 (13,8)	336,8	
10 - 25	28	28,9	2137	1985,2	0,15 (27,4)	422,4	
25 - 30	4	4,1	305	805,9	0,06 (11,1)	115,7	
30 - 50	8	8,2	611	2713,6	0,21 (37,5)	283,6	
50 - 75	1	1	76	730,8	0,06 (10,1)	50,1	
75 - 100	0	0	0	0	0 (0)	0	
> 100	0	0	0	0	0 (0)	0	
Всего	97	100	7404	7234,3	0,55	1208,6	
Суммарная дл	пина пор	размером	свыше 2	?5 мкм на 1 c	M², MKM	34296,9	
Суммарная дл	Суммарная длина пор размером свыше 50 мкм на 1 см², мкм						

70						
60						
50						
40						
30						
20						
10						
0	00	3227 429.5	0.2	643,0 749	1 856,4	- 2
251-109,2	392-216,0	3227-425	29.5 536.2	. BAS, CA3,0.749	1 856,4 856,4	965

Расстояние до ближайшего соседа, мкм

▼ Поры

	Параметр	Минимальное	Максимальное	Среднее	СКО
- [Диаметр экв. круга, мкм	7,03	327,6	32,5	45,0
	Расстояние до ближайше	2,51	963,2	151,8	197,6

Диаметр экв. круга (распределение)

Расстояние до ближайшего соседа (распределение)

▼ Группы пор

Параметр	Минимальное	Максимальное	Среднее
Площадь, кв. мкм	8065	57877	30909
Минимальная проекция,	70,6	185,2	128,4
Максимальная проекция	182,5	516,4	336,3
Расстояние до ближайши	381,2	2311	1172

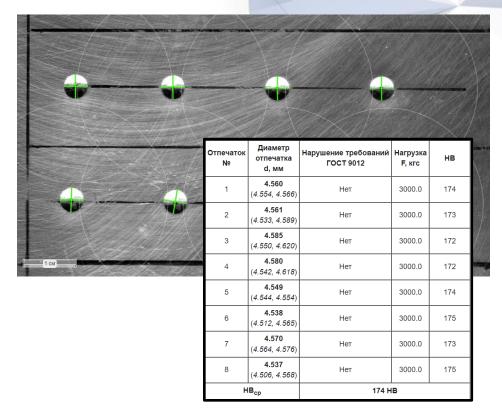
▼ Анализ пор

Параметр	Значение
Проанализированная площадь, мм²	106.6
Поры (кол-во частиц)	256
Поры (площадь, мм²)	0.6206
Поры (доля, %)	0,58
Поры (ср. расстояние между соседями, мм)	0.708

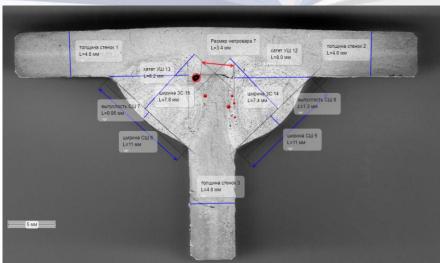
▼ Распределение пор по размерам

Относительно количества

Этносительно площадей


Относительно объёмов

▼ Балл пористости по методике Hydro


Параметр	Значение
Количество полей зрения	1
Площадь анализа, кв.мм	106.559
Площадь пор, кв.мкм	620593
Доля пористости, %	0.582
Балл по доле	4.3
Количество пор (D > 9 мкм)	237
Кол.пор на 1 кв.мм	2.2
Балл по количеству	1.4

Параметр	Минимальное значение	Среднее значение	Максимальное значение	ско
Выпуклость сварного шва (выпуклость СШ), мм	1	1.1	1.3	0.3
Катет углового шва (катет УШ), мм	8	8.1	8.2	0.1
Толщина стенок свариваемых деталей (толщина стенок), мм	4.8	4.8	4.8	0
Ширина зоны сплавления (ширина 3C), мм	7.4	7.6	7.8	0.3
Ширина сварного шва (ширина СШ), мм	11	11.1	11.3	0.2

Анализ геометрических параметров

КОНТРОЛЬ СТРУКТУРЫ НА ПРОФЕССИОНАЛЬНОМ УРОВНЕ

ACM.1

На базе прямого или инвертированного оптического микроскопа плоского поля отраженного и проходящего света Диапазон измерений длины: 0–40 мм

ACM.2

На базе стереомикроскопа Диапазон измерений длины: 0-80 мм

ACM.3

На базе планшетного сканера Диапазон измерений длины: 0–80 мм

Анализатор структуры SIAMS – средство измерения утвержденного типа

КОНТРОЛЬ СТРУКТУРЫ НА ПРОФЕССИОНАЛЬНОМ УРОВНЕ

- Разработка универсальных инструментов и комплексный научно-исследовательский подход, применяемый командой СИАМС, позволяет расширять круг решаемых задач в области анализа микроструктуры материалов.
 - Алгоритмы анализа, использованные для демонстрации возможностей ПО SIAMS в данной презентации, интегрированы в программный пакет автоматизированных методик SIAMS и могут быть рекомендованы для анализа структуры материалов в научных и производственных лабораториях.

ООО «СИАМС»

г. Екатеринбург, ул. Коминтерна 16, оф. 604 тел./факс (343) 379-00-34 (35,36)

Отдел продаж и маркетинга

E-mail: info@siams.com

Тел/факс: +7 (343) 379-00-34 (35,36)

Сайт: siams.com, siams24.ru

